Praktikum
Medizinische Mikrobiologie

Abteilung für Medizinische Mikrobiologie
der Ruhr-Universität Bochum

Wintersemester 2020/21
Inhaltsverzeichnis

Sicherheitsvorschriften und allgemeine Regeln für das Arbeiten im Praktikum..........................5
Unterweisung für die Teilnahme am Praktikum unter COVID-19 Bedingungen.........................8
Unterweisung gemäß §14 BiostoffV für Tätigkeiten mit biologischen Arbeitsstoffen der Risikogruppe 2...10

Systematische Differenzierung von Keimen..13

Woche 1...17
Mikrobiologischer Ansatz..18
Verwendete Nährmedien...18
Drei-Ösen-Ausstrich...19
Mikrobiologische Differenzierungsmethoden..20
Katalase-Testung...20
Clumpingfaktor-Test (= CF-Test)...20
Oxidase-Test..20
Bunte Reihe..21

Arbeitsaufgaben..23
Mikrobiologie-Quiz (Dienstag)...24
Eigener Rachenabstrich (ab Dienstag)..26
Eigener Nasenabstrich (ab Dienstag)...27
Bakterien aus einem Keimgemisch isolieren, einfache Tests zur Identifizierung anwenden (ab Mittwoch)..28
Klinisch-mikrobiologische Meningitis Fälle (Donnerstag)..30
Donnerstag: Praktikumsbegleitende Vorlesung..31

Woche 2...33
Methoden der Resistenzbestimmung..34
Agardiffusionstest..35
Auswertung Agardiffusionstest...36

Arbeitsaufgaben..39
Klinisch-mikrobiologischer Fall Anna (ab Dienstag)...40
Bakteriologischer Ansatz von Urinproben..40
Auswertung Klinisch-mikrobiologische Fall Anna...41
Klinisch-mikrobiologischer Fall Bernd (ab Dienstag)...42
Auswertung Klinisch-mikrobiologische Fall Bernd...43
Fall Christian (ab Dienstag)...44
Donnerstag: Praktikumsbegleitende Vorlesung..46

Woche 3...47
Übersicht wichtiger Bakterien..49

Einteilung einiger wichtiger Antibiotika..52
Zur Vorbereitung des Praktikums sollten Sie unbedingt vorher die Anleitungen in diesem Skript für den jeweiligen Kurstag lesen.

Hier finden Sie weiterführende Informationen zu den im Kurs behandelten Inhalten, sowie ein kurzes Quiz zu jedem Kapitel, mit dem Sie Ihren Lernfortschritt selbst testen können. Die Quiz sind lediglich für Sie selbst und werden nicht bewertet.

Damit Sie auch verstehen, was Sie im Praktikum tun, und den Zusammenhang zu Ihrer späteren klinischen Tätigkeit herstellen können, empfehlen wir Ihnen dringend die Online-Vorlesungen.

Sicherheitsvorschriften und allgemeine Regeln für das Arbeiten im Praktikum
Vor dem Praktikum

- Schwangere und stillende Mütter melden sich bitte VOR Beginn des Praktikums oder unverzüglich nach Bekanntwerden der Schwangerschaft im Sekretariat der Medizinischen Mikrobiologie

- Studenten können NICHT am Präsemzpraktikum teilnehmen, wenn sie zur einer Risikogruppe gehören oder aufgrund von Krankheit und/oder Krankheitszeichen den Campus der Ruhr-Universität nicht betreten können.

Zu Beginn des Praktikums

- Mit Ihrer Gruppennummer sind Sie Inhaber/in eines Arbeitsplatzes geworden, für dessen Zustand Sie während des Praktikums verantwortlich sind.

- Sie erhalten von uns eine persönlich Schutzausrüstung, die Sie an Ihrem Arbeitsplatz finden:
 1) einen medizinischen Mund-Nasenschutz (MNS), der nur im Praktikumsraum getragen wird und am Ende des Praktikumstages entsorgt wird. Bitte achten Sie darauf, diesen Mund-Nasenschutz SOFORT aufzusetzen, nachdem Sie Ihren eigenen abgenommen haben und achten Sie bitte während des Wechsels auf Abstand zu Ihren Kollegen! Sie erhalten für jeden Kurstag einen neuen medizinischen Mund-Nasenschutz.

- Die Kittel dürfen nicht außerhalb des Praktikumsraums getragen werden.

- Die Straßenoberbekleidung darf nicht mit in den Praktikumsraum gebracht werden. Bitte benutzen Sie die Spinde auf dem Flur oder (falls alle Spinde belegt sind) die Unterschränke im Praktikumsraum.

- Im Praktikumsraum ist Essen, Trinken, Schminken und Rauchen verboten. Dies trifft auch für Kaugummi, Bonbons usw. zu.

- Die Benutzung von Mobiltelefonen im Kursraum ist untersagt.
Während des Praktikums

• Seien Sie sich zu jedem Zeitpunkt bewusst, dass Sie mit infektiösem Material umgehen und arbeiten Sie bitte dementsprechend sorgsam! Sorgen Sie dafür, dass entsprechende Gefäße nach der Entnahme des Materials sofort wieder verschlossen werden.

• Bitte achten Sie darauf, während des Praktikums nicht mit den Händen an den Mund zu fassen und unterlassen Sie das Kauen an Stiften etc.

• Nicht mit dem Mund pipettieren, vorhandene Pipettierhilfen verwenden.
• Bei Bedarf, aber immer vor Verlassen des Praktikumsraumes, sind die Hände sorgfältig zu desinfizieren.

• Offene Wunden an den Händen sind mit Schutzhandschuhen (Nitril weiß) und zusätzlich mit einem Pflaster zu schützen.

• Die Arbeitstische sind sauber zu halten.

• Benutzte Objekträger werden in den Behältern mit der Aufschrift "Glasabfall" gesammelt.

• Infektiöser Abfall wie Abstrichtupfer, Mundspatel, Plastik-Pipetten wird in die Behälter mit der Aufschrift „Infektiöser Abfall“ entsorgt.

Am Ende jedes Praktikumstages

• Am Ende eines Praktikumstages sind die Arbeitsplätze aufzuräumen und mit der bereitstehenden Desinfektionslösung (antifect liquid N) zu desinfizieren.

• Agarplatten, die über Nacht bebrütet werden sollen, sind mit Name und Gruppennummer zu beschriften. Röhrchen, die über Nacht bebrütet werden sollen (z.B. Bunte Reihe) sind mit Namen und Gruppennummer zu beschriften.

• Nach Beendigung der Arbeit und vor Verlassen des Labors müssen die Hände desinfiziert werden (Desderman pure) und bei Verschmutzung danach(!!) mit Seife sorgfältig gewaschen werden.
Unterweisung für die Teilnahme am Praktikum unter COVID-19 Bedingungen

Gefahren für Mensch und Umwelt
Die Erkrankung „Coronavirus Disease 2019 (COVID-19)“ wird durch das Coronavirus SARS-CoV-2 verursacht.

Übertragungsweg: Das Virus wird hauptsächlich durch Tröpfchen über die Luft übertragen. Auch eine Schmierinfektion über kontaminierte Hände auf die Schleimhäute (Mund, Nase, Auge) ist möglich.

Inkubationszeit: Nach einer Infektion kann es einige Tage bis zwei Wochen dauern, bis Krankheitszeichen auftreten. Das Virus kann bereits übertragen werden, bevor die Infizierten Symptome entwickeln. Auch ohne Symptome kann die Krankheit übertragen werden.

Schutzmaßnahmen und Verhaltensregeln

Sie erhalten von uns eine persönlich Schutzausrüstung, die Sie an Ihrem Arbeitsplatz finden:

Die Straßenoberbekleidung darf nicht offen im Praktikumsraum gelagert werden. Bitte benutzen Sie dafür die Unterschränke an Ihrem Arbeitsplatz.

Jeder Student hat einen eigenen Arbeitsplatz und führt alle Versuche allein durch.

An Ihrem Platz finden Sie all Materialien, die Sie zur Durchführung der Versuche benötigen, sowie Händedesinfektionsmittel (Desderman pure) und ein Flächendesinfektionsmittel (antifect N liquid). Bei Fragen oder falls etwas fehlt, melden Sie sich bitte, es kommt ein Betreuer zu Ihnen.

Sobald Sie alle Versuche durchgeführt und Ihren Platz aufgeräumt haben, können Sie nach einer Händedesinfektion den Praktikumsraum verlassen. Bitte gehen Sie allein und achten Sie auf einen Mund-Nasenschutz und den Sicherheitsabstand von 1,50 m.

Dokumentation

An ersten Kurstag liegt an Ihrem Arbeitsplatz einen Dokumentationsbogen mit Angaben zur Person (Name, Adresse, Telefonnummer) und zum Platz (Tisch/Platznummer). Der Dokumentationsbogen wird eingesammelt, verbleibt aber im Praktikumsraum. Hier wird von den Betreuern die Anwesenheit an den Kurstagen dokumentiert. Dies dient auch der Zulassung zur Prüfung bzw der Bestätigung der regelmässigen Teilnahme.

Erste Hilfe

- bei Krankheitssymptomen den Hausarzt kontaktieren
- Studierende mit mindestens einem der folgenden Symptome dürfen das Gelände der Hochschule nicht betreten:
 - Fieber,
 - Störung von Geruchs- oder Geschmackssinn,
 - Trockener Husten,
 - Kopf- und Gliederschmerzen,
 - Halsschmerzen.
- COVID-19-Patienten und Kontaktpersonen müssen die Isolations- bzw Quarantäneanordnungen des Gesundheitsamtes befolgen

Sachgerechte Entsorgung

- Kontaminierte Geräte und Instrumente werden gemäss Hygieneplan desinfiziert
- Sämtliche kontaminierten Wegwerf-Abfälle werden in den gekennzeichneten Abfallbehältern gesammelt und anschliessend autoklaviert.
- Kittel und Mundschutze werden in den gekennzeichneten Abfallbehältern gesammelt und unter der Schlüsselnummer 180103 / UN3291 entsorgt
Unterweisung gemäss §14 BiostoffV für Tätigkeiten mit biologischen Arbeitsstoffen der Risikogruppe 2

Gefahren für Mensch und Umwelt

Bakterien der Risikogruppe 2 können bei Einwirkung auf den menschlichen Körper Infektionen und Erkrankungen verursachen. Ein allergenes und toxisches Potential ist ebenfalls nicht auszuschließen. Die Aufnahme in den Körper kann erfolgen

- durch Verschlucken von Probenmaterial,
- durch Eindringen von Erregern in bestehende oder verletzungsbedingte Hautschäden,
- beim Verspritzen der Probe über das Auge und die Schleimhäute oder
- durch Inhalation von Aerosolen. Aerosole sind unsichtbare, feinste schwebende Tröpfchen, die bei vielen Labortätigkeiten entstehen können: zB bei Vortexen (immer geschlossen!), pipettieren (Tropfen möglichst tief in die Röhrchen geben). Infektionsmöglichkeiten bestehen bei Inhalation dieser Aerosole oder Kontakt mit deren Niederschlag auf Oberflächen.

Schutzmaßnahmen und Verhaltensregeln

- Tätigkeiten mit Bakterien der RG 2 dürfen ausschließlich in Laboratorien der Schutzstufe 2 oder höher durchgeführt werden. Zutritt zum Labor haben nur ermächtigte Personen.
- Im Labor sind ein geschlossener Laborkittel und festes und geschlossenes Schuhwerk zu tragen. Die Schutzkleidung darf nur in den Arbeitsräumen getragen werden und ist beim Verlassen des Labors abzulegen.
- Schmuck (Uhren, Ringe) sind abzulegen. Im Labor ist essen, rauchen, trinken, Kaugummi kauen oder Kosmetika auftragen verboten.
- Beim Verlassen des Labors und nach jedem Hautkontakt mit erregерhaltigem Material sind die Hände zu desinfizieren (Desderman pure), bei sichtbarer Verschmutzung zusätzlich zu waschen. Danach ist eine Handpflege gemäss Hautschutzplan vorzunehmen.
- Kontaminierte Arbeitsgeräte (zB Pipettierhilfen, Ösen etc) müssen sofort desinfiziert werden.
- Nach Beenden der Arbeiten ist der Arbeitsplatz mit einem Flächendesinfektionsmittel (antifect N liquid) zu desinfizieren und sauber und aufgeräumt zu hinterlassen.
Verhalten im Gefahrfall

- Beim Freiwerden von Bakterien der Risikogruppe 2 in großer Menge oder Konzentration (z.B. beim Verschütten einer Kultur) wird der Bereich sofort gesperrt und der Gruppenleiter gerufen.
- Flüssigkeiten werden mit Zellstoff aufgesaugt. Zellstoff und kontaminierten Bereich sofort mit Desinfektionsmittel (Mikrobac forte, 2,5%) einsprühen und gemäß Hygieneplan einwirken lassen und danach reinigen.
- Benetzte Kleidung (auch Unterbekleidung) sofort ausziehen und erst nach desinfizierender Reinigung wieder verwenden.
- Sämtliche kontaminierten Gegenstände (auch Laborkittel) sind in Entsorgungsbeuteln zu sammeln und zu autoklavieren.

Erste Hilfe

- Verletzungen sind sofort dem Gruppenleiter zu melden und werden in das Verbandbuch eingetragen.
- Offene Wunden ausspülen, möglichst ausbluten lassen und sofort mit Wund-Desinfektionsmittel Cutasept F einsprühen, Desinfektionsmittel laut Vorgabe des Herstellers mind 15 sec einwirken lassen.
- Spritzer ins Auge mit der Augendusche intensiv spülen. Die Augenduschen befinden sich an den Waschbecken.
- Bei intensivem Kontakt mit Bakterien der Risikogruppe 2 (z.B. Verschlucken, Einatmen, Inkorporation durch Verletzungen) Arzt aufsuchen.

Sachgerechte Entsorgung

- Kontaminierte Geräte und Instrumente gemäss Hygieneplan reinigen und desinfizieren, sterilisieren oder autoklavieren.
- Sämtliche kontaminierten Wegwerf-Abfälle werden in den gekennzeichneten Abfallbehältern gesammelt und anschliessend autoklaviert.
- Kittel werden in den gekennzeichneten Abfallbehältern gesammelt und unter der Schlüsselnummer 180103 / UN3291 entsorgt.
Systematische Differenzierung von Keimen

Schritt 1
Wachstum auf Agarplatten beurteilen (siehe Tabelle 1)

Tabelle 1.: Wachstumsverhalten auf verschiedenen Agarplatten

<table>
<thead>
<tr>
<th></th>
<th>Kochblut</th>
<th>Blut</th>
<th>MacConkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemophilus spp.</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>grampositive Bakterien, bestimmte gramnegative Bakterien (Neisseria meningitidis), Sprosspilze</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Enterobacterales, viele Nonfermenter (z. B. Pseudomonas aeruginosa, Acinetobacter)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Schritt 2
Grampräparat anlegen und beurteilen (siehe Tabelle 2)

Tabelle 2: Aussehen von Bakterien in der Gramfärbung

<table>
<thead>
<tr>
<th></th>
<th>grampositiv (violett)</th>
<th>gramnegativ (rot)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacillus spp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clostridium spp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionibacterium spp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Listeria monocytogenes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactobacillus spp.</td>
<td></td>
</tr>
<tr>
<td>Kokken</td>
<td>Staphylokokken (in Haufen)</td>
<td>Neisseria spp. (Diplokokken, semmelförmig)</td>
</tr>
<tr>
<td></td>
<td>Streptokokken, Enterokokken (in Ketten), Spezialfall S. pneumoniae (als Diplolokken, lanzettförmig)</td>
<td></td>
</tr>
<tr>
<td>Sprosspilze</td>
<td>Sprossspilze (z. B. Candida albicans) erscheinen als blaue rundlich-ovale Strukturen, allerdings deutlich größer als Bakterien</td>
<td></td>
</tr>
</tbody>
</table>
Schritt 3
Betrachten Sie genau die Koloniemorphologie und das Hämolyseverhalten der Keime, wichtige Charakteristika finden Sie in den Tabellen 3 und 4:

Tabelle 3: Charakteristische Koloniemorphologien von Bakterien

<table>
<thead>
<tr>
<th>Charakteristik</th>
<th>Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>grünliches Pigment, metallischer Glanz</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Bakterium schwärmt über den Agar (jedoch kein Schwärmen auf MacConkey-Agar)</td>
<td>Proteus spp.</td>
</tr>
<tr>
<td>flache Laktose-positive Kolonien auf MacConkey-Agar</td>
<td>z. B. E. coli</td>
</tr>
<tr>
<td>schleimige Laktose-positive Kolonien auf MacConkey-Agar</td>
<td>z. B. Klebsiella</td>
</tr>
<tr>
<td>Laktose-negative Kolonien auf MacConkey-Agar</td>
<td>z. B. Proteus</td>
</tr>
</tbody>
</table>

Tabelle 4: Charakteristisches Hämolyseverhalten von Bakterien

<table>
<thead>
<tr>
<th>Hämolyseform</th>
<th>Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergrünendes Wachstum auf Blutagar (=Alpha-Hämolyse)</td>
<td>Streptococcus pneumoniae sogenannte vergrünende Streptokokken (z. B. S. mitis, S. anginosus, S. salivarius) Enterococcus faecium Lactobacillus spp.</td>
</tr>
<tr>
<td>Hämolisierendes Wachstum auf Blutagar (=Beta-Hämolyse)</td>
<td>Staphylococcus aureus Staphylococcus lugdunensis Staphylococcus haemolyticus Streptococcus pyogenes (= A-Streptokokken) Streptococcus agalactiae (= B-Streptokokken) Listeria monocytogenes</td>
</tr>
<tr>
<td>keine Hämolyse oder Vergrünung auf Blutagar (= Gamma-Hämolyse)</td>
<td>Staphylococcus epidermidis und etliche andere koagulase-negative Staphylokokken Enterococcus faecalis Corynebacterium spp.</td>
</tr>
</tbody>
</table>
Abbildung 1: Schema zur Differenzierung grampositiver Kokken

Tests mit * gekennzeichnet werden im Kurs nicht durchgeführt

Differenzierung von grampositiven Kokken

- **Katalase-Test**
 - +
 - Staphylococcus spp.
 - CF-Test, Koagulase-Test*
 - Ø
 - koagulase-negative Staphylokokken
 - Staphylococcus aureus

- Ø
 - Weitere Differenzierung:
 - z. B. TMA-Platte, Urease, Novobiocin-Resistenz

Unterscheidung z. B. in
- Staphylococcus epidermidis (TMA blau, Urease pos.),
- Staphylococcus saprophyticus (TMA gelb, Urease pos., Novobiocin resistent)

- Ø
 - streptococcus spp.,
 - Enterococcus spp.

- +
 - Galle-Esculin-Platte
 - Staphylococcus spp.
 - Enterococcus spp.
 - β-Hämolyse
 - Latex-Agglutination* oder CAMP-Test

Unterteilung in
- A-Streptokokken,
- B-Streptokokken (CAMP positiv)
 - und andere

Optochin
- sensitiv
- Streptococcus pneumoniae
- resistant
- vergrünende Streptokokken

Unterscheidung in
- Staphylococcus epidermidis (TMA blau, Urease pos.)
- Staphylococcus saprophyticus (TMA gelb, Urease pos., Novobiocin resistent)
Schritt 4 A (bei grampositiven Bakterien)

Grampositive Stäbchen werden im Kurs nicht weiter differenziert; fragen Sie Ihre Gruppenbetreuer, um welche Erreger es sich handelt.

Für grampositive Kokken wenden Sie das Schema aus Abbildung 1 an.

Wichtig: Das Schema gilt nur für grampositive Kokken!

Schritt 4 B (bei gramnegativen Bakterien)

Bei gramnegativen Stäbchen beurteilen Sie das Wachstum auf unterschiedlichen Agarplatten (siehe Tabelle 1 auf Seite 13; damit können Sie z.B. den Verdacht auf *Haemophilus influenzae* äußern), testen Sie die Oxidase und legen Sie eine Bunte Reihe an.

Tabelle 5: Ausfall der Oxidase-Reaktion

<table>
<thead>
<tr>
<th>Oxidase positiv</th>
<th>Oxidase negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas spp.</td>
<td>Enterobacterales (z. B. E. coli, Klebsiella, Enterobacter, Citrobacter)</td>
</tr>
<tr>
<td>Neisseria spp.</td>
<td>ebenso die grampositiven Staphylokokken und Streptokokken</td>
</tr>
</tbody>
</table>
Woche 1

<table>
<thead>
<tr>
<th>Lernziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mikrobiologischer Ansatz / Drei-Ösenausstrich</td>
</tr>
<tr>
<td>• Unterscheidung der wichtigsten mikrobiologischen Nährböden</td>
</tr>
<tr>
<td>• Erkennen von Mischkulturen und Isolieren von Einzelkolonien; Bedeutung von Reinkulturen</td>
</tr>
<tr>
<td>• Zeitbedarf bei mikrobiologischen Untersuchungen</td>
</tr>
<tr>
<td>• Grundprinzipien der Keimdifferenzierung</td>
</tr>
<tr>
<td>Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 18.3</td>
</tr>
<tr>
<td>• Physiologische Flora</td>
</tr>
<tr>
<td>Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 4</td>
</tr>
<tr>
<td>• Meningitis: altersabhängiges Keimspektrum, mikrobiologische Diagnostik, Therapie</td>
</tr>
<tr>
<td>Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 113</td>
</tr>
</tbody>
</table>
Mikrobiologischer Ansatz

Verwendete Nährmedien

Tabelle 6: Verwendete Nährmedien

<table>
<thead>
<tr>
<th>Agar</th>
<th>Farbe</th>
<th>Verwendung</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutagar</td>
<td>rot</td>
<td>Hochwertiger Nährboden zur Anzüchtung auch anspruchsvoller Bakterien.</td>
<td>Die Zugabe von Hammelblut ermöglicht die Beurteilung des Hämolyseverhaltens.</td>
</tr>
<tr>
<td>Kochblutagar (Schokoladenagar)</td>
<td>schokoladenbraun</td>
<td>Hochwertiger Nährboden zur Anzüchtung besonders anspruchsvoller Bakterien, z. B. Haemophilus spp.</td>
<td>Der Agar enthält lysiertes Hammelblut und damit freies Hämin (Faktor X) und NAD (Faktor V)</td>
</tr>
</tbody>
</table>
Drei-Ösen-Ausstrich

Ziel ist eine Ausdünnung der Bakterien, um Einzelkolonien zu bekommen. Falls die Methode zum Isolieren verschiedener Koloniemorphologien einer Mischkultur benutzt wird, reicht es, die betreffenden Kolonien gerade eben zu berühren!

- Material mit der Impföse strichförmig über die eine Hälfte der Platte verteilen (Bereich A), siehe Abbildung 2, dabei möglichst viele Impfstriche machen.
- Öse einmal drehen, durch Bereich A führen und ein weiteres Viertel der Platte ausstreichen (Bereich B), dabei möglichst viele Impfstriche machen.
- Öse einmal durch Bereich B führen und das letztes Viertel der Platte ausstreichen (Bereich C), dabei möglichst viele Impfstriche machen.

Abbildung 2: Dreiosenausstrich
Mikrobiologische Differenzierungsmethoden

Katalase-Testung
Zur Differenzierung von Staphylokokken und Streptokokken.
• einen Objektträger auf die schwarze Kachel legen
• mit einer Öse Koloniematerial auf den Objektträger auftragen (Vorsicht: Es darf kein Agar mit aufgetragen werden!)
• auf das Koloniematerial einen Tropfen Katalasereagenz (= H$_2$O$_2$) geben
• das Aufsteigen von Gasbläschen stellt eine positive Katalasereaktion dar

<table>
<thead>
<tr>
<th>Katalase positiv</th>
<th>Katalase negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus spp.</td>
<td>Streptococcus spp.; Enterococcus spp.</td>
</tr>
</tbody>
</table>

Clumpingfaktor-Test (= CF-Test)
• einen Objektträger auf die schwarze Kachel legen
• je einen Tropfen Citratplasma und 0,9 % NaCl getrennt auf den Objektträger geben
• mit der Öse Koloniematerial vom trockenen Rand her in den Tropfen einreiben
• eine Verklumpung im Citratplasma-Tropfen stellt eine positive Reaktion dar (sofern es nicht im NaCl-Tropfen ebenfalls zu einer Verklumpung kommt, dies ist ein Hinweis auf eine unspezifische Agglutination)

<table>
<thead>
<tr>
<th>CF positiv</th>
<th>CF negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>koagulase-negative Staphylokokken, wie z.B. Staphylococcus epidermidis Staphylococcus haemolyticus, u.a.</td>
</tr>
</tbody>
</table>

Oxidase-Test
Insbesondere zur Differenzierung von gramnegativen Bakterien angewandt.
• mit einer Öse Koloniematerial auf den Oxidase-Teststreifen reiben
• eine schnelle blaue Verfärbung innerhalb von 10 s zeigt eine positive Reaktion an

<table>
<thead>
<tr>
<th>Oxidase positiv</th>
<th>Oxidase negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas spp. Neisseria spp.</td>
<td>Enterobacteriales (z. B. E. coli, Klebsiella, Enterobacter, Citrobacter) ebenso die grampositiven Staphylokokken und Streptokokken</td>
</tr>
</tbody>
</table>
Bunte Reihe

Zur Differenzierung von gramnegativen Bakterien.

Die Säurebildung aus den Zuckern Laktose und Saccharose wird durch den Farbumschlag des Indikators Phenolrot von rot nach gelb angezeigt.

- 3-5 Kolonien mit einer Öse vom trockenen Rand her in ein Röhrchen mit 0,9 % NaCl einreiben (Vorsicht bei Mischkulturen! Nur Kolonien mit gleicher Koloniemorphologie nehmen!)
- mit einer Transferpipette 1-2 Tropfen dieser Suspension auf die Röhrchen der Bunten Reihe geben
- bei dem Citrat-Röhrchen (grüner Agar) die Schräfläche mit einer Öse beimpfen
- bei den anderen Röhrchen (SIM, Urease, OF, Saccharose, Laktose) den Agar mit einer Öse bis zum Boden einstechen, um die Keimsuspension bis in die Tiefe zu bringen
- Bebrütung über Nacht bei 37 °C
- vor dem Ablesen wird von den Betreuern einige Tropfen des Kovacz-Indolreagens auf das SIM-Röhrchen gegeben
- Ablesen (siehe Tabelle 7 auf Seite 22)
Tabelle 7: Bunte Reihe

<table>
<thead>
<tr>
<th>Röhrchen</th>
<th>SIM</th>
<th>Urease</th>
<th>Lactose</th>
<th>Saccharose</th>
<th>Citrat</th>
<th>OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>vor Ablesen ...</td>
<td>... Kovacs-Reagenz ist aufgetropt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>positiv</td>
<td>Rotfärbung des Tropfens</td>
<td>rot-violett</td>
<td>gelb</td>
<td>gelb</td>
<td>blau</td>
<td>oben gelb, unten grün = O obs und unten gelb = O/F</td>
</tr>
<tr>
<td>negativ</td>
<td>Farblos</td>
<td>gelb</td>
<td>gelb</td>
<td>rot</td>
<td>rot</td>
<td>grün</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>Indol</th>
<th>H₂S</th>
<th>Harnstoff</th>
<th>Lactose</th>
<th>Saccharose</th>
<th>Citrat</th>
<th>OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>v</td>
<td>-</td>
<td>O/F</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>v</td>
<td>+</td>
<td>O/F</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O/F</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O/F</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O/F</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>O/F</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>O/F</td>
</tr>
<tr>
<td>Morganella morganii</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>v</td>
<td>v</td>
<td>-</td>
<td>O/F</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>O/F</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>O</td>
</tr>
</tbody>
</table>

v: variabel; O: oxidativer Glucoseabbau; F: fermentativer Glucoseabbau
Arbeitsaufgaben
Mikrobiologie-Quiz (Dienstag)

Sie erhalten 6 Keime (MQ1 bis MQ6) bereits auf Agarplatten ausgestrichen, um welche Keime es sich handelt, verraten wir Ihnen hier:

- Staphylococcus aureus
- Staphylococcus haemolyticus
- Streptococcus agalactiae
- Streptococcus salivarius
- Klebsiella pneumoniae
- Pseudomonas aeruginosa

Aufgabe
Ordnen Sie den Keimen MQ1 bis MQ6 die richtige Speziesbezeichnung zu.

Ein paar Hilfestellungen:
- die Aufgabe ist lösbar durch die Analyse des Wachstums auf unterschiedlichen Nährböden (siehe Tabelle 1),
- durch die Beachtung der Koloniemorphologie (siehe Tabelle 3)
- durch die Beachtung des Hämolyseverhaltens (siehe Tabelle 4)
- und durch einfache Tests wie Oxidase, Katalase und CF-Test (siehe Seite 20)

Fragen

Bitte betrachten Sie zunächst das Wachstum der 6 Keime auf Blutagar und MacConkey-Agar. Gibt es Keime, die nicht nur auf Blutagar, sondern auch auf MacConkey-Agar wachsen?

MacConkey-Agar ist ein Selektivagar, welche Keime kann man auf diesem Agar anzüchten?

Wie kann ich Klebsiella pneumoniae und Pseudomonas aeruginosa differenzieren?

Welche Keime wachsen nur auf Blutagar und nicht auf MacConkey-Agar?

Wie ist das Hämolyseverhalten auf Blutagarplatten der restlichen vier Keime:
- Staphylococcus aureus
- Staphylococcus haemolyticus
- Streptococcus agalactiae
- Streptococcus salivarius

Mit welchem Test kann ich Staphylokokken und Streptokokken differenzieren?
<table>
<thead>
<tr>
<th></th>
<th>MQ 1</th>
<th>MQ 2</th>
<th>MQ 3</th>
<th>MQ 4</th>
<th>MQ 5</th>
<th>MQ 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wachstum auf Blutagar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämolyse auf Blutagar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wachstum MacConkey Agar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katalase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ggf. CF-Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name des Keims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eigener Rachenabstrich (ab Dienstag)

Aufgabe Dienstag
- Sie erhalten einen Abstrichtupfer mit einem Transportmedium, den Sie bitte mit nach Hause nehmen.
- Zuhause führen Sie einen Mund-/Rachenabstrich bei sich durch! Dazu streichen sie mit dem sterilen Tupfer über die Mundschleimhaut oder die Rachenwand. Anschliessend wird der Tupfer in das Transportmedium gesteckt.
- Bitte bringen Sie den Abstrich zum nächsten Kurstag mit.

Aufgabe Mittwoch
- Mikrobiologischer Ansatz eines Mund-/Rachenabstrichs, dazu
- Tupfer in oberem Drittel einer Blutagarplatte abrollen, davon ausgehend Dreiöseausstrich vornehmen (Ziel ist es, Einzelkolonien zu erhalten)
- Bebrütung für 18-24 h bei 37 °C

Aufgabe Donnerstag
- Suche Sie nach relevanten Keimen.
- Identifizieren Sie diese Keime mittels Koloniemorphologie und Hämolyseverhalten und ggf Katalase- und CF-Test.

Fragen:
Wann sollte ein Rachenabstrich durchgeführt werden? Bei welcher Verdachtsdiagnose?

Nach welchen Erregern sucht man und wie wäre das Wachstum dieser Erreger auf einer Blutagarplatte?

Was gehört zur Standortflora (physiologische Flora)?

Wie viele verschiedenen Keimarten finden Sie in Ihrem Rachenabstrich?
Eigener Nasenabstrich (ab Dienstag)

Aufgabe Dienstag
- Sie erhalten einen Abstrichtupfer mit einem Transportmedium, den Sie bitte mit nach Hause nehmen.
- Bitte bringen Sie den Abstrich zum nächsten Kurstag mit.

Aufgabe Mittwoch
- Mikrobiologischer Ansatz eines Nasenabstrichs, dazu
- Tupfer in oberem Drittel einer Blutagarplatte abrollen, davon ausgehend Dreieöseausstrich vornehmen (Ziel ist es, Einzelkolonien zu erhalten)
- Bebrütung für 18-24 h bei 37 °C

Aufgabe Donnerstag
- Suche Sie nach relevanten Keimen.
- Identifizieren Sie diese Keime mittels Koloniemorphologie und Hämolyseverhalten und ggf Katalase- und CF-Test.
- Finden Sie *Staphylococcus aureus*-verdächtige Kolonien in Ihrem Nasenabstrich?

Fragen:

Welche Indikation gibt es zur Durchführung eines Nasenabstriches?

Nach welchen Erregern sucht man und wie wäre das Wachstum dieser Erreger auf einer Blutagarplatte?

Welche Bakterien gehören zur Standortflora?

*Wie unterscheidet man *S. aureus* von anderen Staphylokokken (mit welchem Test)?*

*Wie würde man feststellen, ob es sich bei einem *S. aureus* um einen MRSA handelt?*
Bakterien aus einem Keimgemisch isolieren, einfache Tests zur Identifizierung anwenden (ab Mittwoch)

Sie bekommen ein Keimgemisch mit 3 verschiedenen Keimen, ausgestrichen auf einer Blutagarplatte und einer MacConkey-Agarplatte. Es handelt sich um zwei grampositive Kokken und ein gramnegatives Stäbchen.

Aufgabe Mittwoch
Isolieren Sie die Keime jeweils auf eine gedrittelte Blut- und MacConkey-Agarplatte
Differenzieren Sie die gramnegative Bakterien durch eine Bunte Reihe (siehe Seite 21)

Aufgabe Donnerstag
ausgehend von Ihren Isolationen können Sie systematisch sinnvolle Differenzierungsreaktionen durchführen um die anderen beiden Keime zu identifizieren

Fragen

Welche Keime wachsen auf MacConkey-Agar und welche wachsen nicht?

Welche Spezies gehören zu den grampositive Kokken?

Wie ist das Wachstum von S. aureus auf einer Blutagarplatte bzw. auf einer MacConkey-Agarplatte?
Mittwoch

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wachstum auf Blutagarplatte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koloniemorphologie (Form, Farbe, Größe)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämolyseverhalten (vergrünendes / hämolysierendes Wachstum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wachstum auf MacConkey-Agar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verdachtsdiagnoes (mögliche Keimgruppe/Gattung)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Donnerstag

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katalase-Test (falls durchgeführt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF-Test (falls durchgeführt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidase-Test (falls durchgeführt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auswertung der Bunte Reihe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnose</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Klinisch-mikrobiologische Meningitis Fälle (Donnerstag)

Fall 1
Kurz nach der Geburt fällt bei einem Säugling ein blasses Hautkolorit und eine gespannte Fontanelle auf. Der Säugling ist hypotherm und im Labor fällt eine Leuko- und Thrombopenie auf.

Fall 2

Fall 3
Ein 70-jähriger Patient wird mit Fieber aufgenommen. Am zweiten Tag im Krankenhaus trübt er ein und ist nicht mehr ansprechbar. Daraufhin wird eine Liquorpunktion durchgeführt.

Aufgabe
Sie erhalten eine Blutagarplatte mit der ausgestrichenen Liquorprobe eines dieser Patienten. Zu den Fällen 1-3 erhalten Sie eine Abbildung mit den mikroskopischen Bildern der angezüchteten Erreger.

• Identifizieren Sie den Keim mit den Ihnen zur Verfügung stehenden Mitteln (Koloniemorphologie, Hämolyseverhalten, Katalase-, Oxidase- und CF-Test)
• Ordnen Sie den Keim einem der drei Fälle und damit auch einem der drei mikroskopischen Bilder zu.

Fragen
Bei einer Meningitis ist das Erregerspektrum abhängig vom Erkrankungsalter. Der Erreger findet man bei Kindern im Alter ≤6 Wochen?

Welche Erreger findet man bei Kindern > 6 Wochen?

Welche Erreger findet man bei Erwachsenen?

Wie würde Streptococcus pneumoniae auf Blutagar wachsen?

Wie wäre das Wachstum von Neisseria meningitidis auf Blutagar?
Praktikumsbegleitende Vorlesung Woche 1

Thema:
Nachbesprechung der 1. Kurswoche und
Einführung in die Resistenzbestimmung

Die Vorlesung wird auf unserem Server zur Verfügung gestellt unter
https://memiserf.medmikro.ruhr-uni-bochum.de/lehre_medizin.html
Woche 2

Lernziele

• Grundprinzipien der Resistenztestung
 Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 18.9

• Einteilung der Antibiotika

• Wirkmechanismus der Betalaktam-Antibiotika
 Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 94-97

• Antibiotika mit prinzipieller Wirksamkeit gegenüber
 Pseudomonas aeruginosa

• MRSA
 MLSB-Resistenz (bei Staphylokokken)
 Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 24.1

• Harnwegsinfektionen:
 Keimspektrum, Diagnostik, initial-kalkulierte Antibiotikatherapie, Bewertung mikrobiologischer Befunde
 Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 117

• Pneumonien:
 Keimspektrum, mikrobiologische Diagnostik, initial-kalkulierte Antibiotikatherapie
 Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 116
Methoden der Resistenzbestimmung

Es gibt zwei Arten der Resistenzbestimmung: der Reihenverdünnungstest und der Agardiffusionstest

Beim Agardiffusionstest verteilt man eine definierte Menge Bakterien auf einer Agarplatte und legt mit Antibiotika getränkte Testblättchen auf. Von diesem Blättchen ausgehend diffundieren die Antibiotika in den Agar - es entsteht also ein Antibiotikagradient, dessen Konzentration mit zunehmender Entfernung zum Testblättchen abnimmt.

Während der Inkubation entstehen um diese Testblättchen herum Bereiche ohne Bakterienwachstum, die sogenannten Hemmhöfe

Je nachdem, wie groß der Durchmesser des Hemmhofs ist, wird das Antibiotikum nun als resistent, sensibel bei erhöhter Exposition oder sensibel eingeordnet. Hierbei ist wichtig, dass für (fast) jedes für die Therapie in Frage kommende Antibiotikum Grenzwerte bestehen, die die Einordnung von Hemmhofdurchmessern in die drei erwähnten Kategorien ermöglichen. Diese Einordnung erfolgt nach bestimmten Kriterien, die von dafür verantwortlichen Organisationen festgelegt werden (zB EUCAST)

Beim Reihenverdünnungstest wird eine Verdünnungsreihe des zu testenden Antibiotikums hergestellt, die mit einer definierten Menge des Testkeims beimpft wird. Bestimmt wird minimale Hemmkonzentration (MHK), d.h. die Antibiotikakonzentration, bei der das Wachstum des Testkeims erstmals vollständig gehemmt wird.
Agardiffusionstest

Material
- Antibiotika-Testblättchen
- physiologische Kochsalzlösung im Schraubröhrchen
- BaSO₄-Trübungsstandard (McFarland 0,5)
- sterile Wattetupfer
- MH-Agarplatte/n

Durchführung
- 2-3 Einzelkolonien des zu testenden Stammes mit einer sterilen Öse antippen und vom trockenen Rand her in die physiologische Kochsalzlösung einreiben. Vorsicht: Streng darauf achten, nur die gewünschten Kolonien zu nehmen, wenn es sich nicht um eine Reinkultur handelt!
- die Trübung der Bakteriensuspension muss dem BaSO₄-Trübungsstandard entsprechen, falls dies nicht der Fall ist, muss die Bakteriensuspension entweder unter sterilen Bedingungen mit physiologischer Kochsalzlösung verdünnt werden oder es müssen weitere Kolonien eingerieben werden
- einen sterilen Wattetupfer für 2 Sekunden in die Bakteriensuspension tauchen und am Rand des Reagenzröhrchens etwas ausdrücken
- eine MH-Agarplatte mit dem Wattetupfer beimpfen, dazu die gesamte Oberfläche beimpfen, die Platte um 60 ° drehen und wieder die gesamte Oberfläche beimpfen, erneut um 60 ° drehen und die gesamte Oberfläche beimpfen (jeder Punkt der Agarplatte muss dreimal überstrichen worden sein)
- Antibiotika-Testplättchen mit einer Pinzette auf dem Agar platzieren und festdrücken (jedes Plättchen sollte ca. 2 cm vom Rand und ca. 3 cm vom nächsten Plättchen entfernt liegen; auf eine Agarplatte passen ca. 6-7 Plättchen)
- Bebrütung bei 37 °C über Nacht, die Agarseite liegt unten

Ablesen des Agardiffusionstest
- Lineal an Plattenunterseite anlegen und Hemmhofdurchmesser für jedes Antibiotikum protokollieren (wachsen die Bakterien bis unmittelbar an das Plättchen wird „6 mm“ protokolliert)
- anhand der Tabellen 8-11 wird ausgewertet, ob der Keim als resistent (R), sensibel bei erhöhter Exposition (I) oder sensibel (S) eingestuft wird
Auswertung Agardiffusionstest

Tabelle 8: Hemmhofdurchmesser (mm) für *Staphylococcus aureus* (nach EUCAST)

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Abkürzung</th>
<th>Beschickung (µg)</th>
<th>sensibel (S) ≥</th>
<th>resistant (R) <</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefoxitin</td>
<td>FOX</td>
<td>30</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>CIP</td>
<td>5</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>DA oder CO</td>
<td>2</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>E</td>
<td>15</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>CN oder GM</td>
<td>10</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Penicillin</td>
<td>P oder PG</td>
<td>1 IE</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Sulfamethoxazol-</td>
<td>SXT oder TS</td>
<td>23,75 /1,25</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclin</td>
<td>TE oder T</td>
<td>30</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>VA</td>
<td>5</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

*) Agardiffusion ist unzuverlässig und kann nicht zwischen Wildtyp-Isolaten und solchen mit nicht-vanA vermittelte Glycopeptid-Resistenz unterscheiden.

Tabelle 9: Hemmhofdurchmesser (mm) für koagulase-negative Staphylokokken (nach EUCAST)

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Abkürzung</th>
<th>Beschickung (µg)</th>
<th>sensibel (S) ≥</th>
<th>resistant (R) <</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefoxitin</td>
<td>FOX</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>CIP</td>
<td>5</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>DA, CC, CD</td>
<td>2</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>E</td>
<td>15</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>CN oder GM</td>
<td>10</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Penicillin</td>
<td>P oder PG</td>
<td>1 IE</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Sulfamethoxazol-</td>
<td>SXT oder TS</td>
<td>23,75 /1,25</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclin</td>
<td>TE oder T</td>
<td>30</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Novobiocin</td>
<td>NV oder NO</td>
<td>30</td>
<td>nur zur Diagnostik</td>
<td>13</td>
</tr>
</tbody>
</table>

*) Kein derzeit verfügbares Verfahren kann zuverlässig die Penicillinaseproduktion in koagulase-negativen Staphylokokken erkennen.
Tabelle 10: Hemmhofdurchmesser (mm) für *Enterobacterales* (nach EUCAST)

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Abkürzung</th>
<th>Beschickung (µg)</th>
<th>sensibel (S) ≥</th>
<th>resistent (R) <</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>AM oder AP</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Amoxyccillin-Clavulansäure</td>
<td>AMC oder AUG</td>
<td>20/10</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>PRL oder PIP</td>
<td>30</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Piperacillin-Tazobactam</td>
<td>TZP oder PTZ</td>
<td>30/6</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Cefotaxim</td>
<td>CTX</td>
<td>30</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Ceftazidim</td>
<td>CAZ</td>
<td>30</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Cefuroxim</td>
<td>CXM</td>
<td>30</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Imipenem</td>
<td>IPM oder IMI</td>
<td>10</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>ATM</td>
<td>30</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>CIP</td>
<td>5</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>CN oder GM</td>
<td>10</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Sulfamethoxazol-Trimethoprim</td>
<td>SXT oder TS</td>
<td>23,75/1,25</td>
<td>14</td>
<td>11</td>
</tr>
</tbody>
</table>

Tabelle 11: Hemmhofdurchmesser (mm) für *Pseudomonas* spp. (nach EUCAST)

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Abkürzung</th>
<th>Beschickung (µg)</th>
<th>sensibel (S) ≥</th>
<th>resistent (R) <</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin</td>
<td>PRL oder PIP</td>
<td>30</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td>Piperacillin-Tazobactam</td>
<td>TZP oder PTZ</td>
<td>30/6</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td>Cefepim</td>
<td>FEP oder CPM</td>
<td>30</td>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>Ceftazidim</td>
<td>CAZ</td>
<td>30</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>CIP</td>
<td>5</td>
<td>50</td>
<td>26</td>
</tr>
<tr>
<td>Meropenem</td>
<td>MEM</td>
<td>10</td>
<td>24</td>
<td>18</td>
</tr>
</tbody>
</table>
Arbeitsaufgaben
Klinisch-mikrobiologischer Fall Anna (ab Dienstag)

Klinik
Eine 20-jährige Patientin klagt über Fieber und sehr starke Schmerzen beim Wasserlassen. Sie bringt eine Urinprobe zur Untersuchung mit.

Aufgabe Dienstag
Setzen Sie den Urin an (siehe Bakteriologischer Ansatz von Urinproben)

Aufgabe Mittwoch
Zählen Sie die Kolonien und berechnen Sie die Keimzahl pro ml Urin
Identifizieren Sie die Keime mit den Ihnen zur Verfügung stehenden Mitteln (Koloniemorphologie, Hämolyseverhalten, Katalase-, Oxidase- und CF-Test)
Führen Sie eine Resistenzbestimmung durch, wenn dies klinisch sinnvoll erscheint

Fragen
Warum wird eine Urinprobe in Form einer Keimzahlbestimmung angesetzt?
Wie berechnet man die Keimzahl pro ml Urin?
Welche Keimzahl ist relevant bei einem Mittelstrahlurin?
Was sind die häufigsten Erreger eines ambulant erworbenen Harnweginfekts?
Was sind die häufigsten Erreger eines nosokomial erworbenen Harnweginfekts?
Welche Keime besiedeln die distale Region des Harntrakts ist und gelten somit als Kontamination?

Bakteriologischer Ansatz von Urinproben

Material
- Urinprobe
- MacConkey-Agar, Blutagar
- kalibrierte Einmal-Öse (1 µl Volumen, weiß)

Durchführung
- Urin umschütteln
- kalibrierte (weiße) Öse in Urin tauchen
- auf Blutagar rasterförmig ausstreichen (kein Dreiosenausstrich!)
- Öse wieder in Urin tauchen und für MacConkey-Agar wiederholen
- Bebrütung bei 37 °C für 18-24 h
Auswertung Klinisch-mikrobiologische Fall Anna

Keimdifferenzierung

<table>
<thead>
<tr>
<th>Keimzahl</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Koloniemorphologie Blutagar</td>
<td></td>
</tr>
<tr>
<td>Koloniemorphologie MacConkey-Agar</td>
<td></td>
</tr>
<tr>
<td>weitere Differenzierungsverfahren</td>
<td></td>
</tr>
<tr>
<td>Diagnose</td>
<td></td>
</tr>
</tbody>
</table>

Resistenzbestimmung

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Antibiotika-Klasse</th>
<th>Hemmhofdurchmesser in mm</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Klinisch-mikrobiologischer Fall Bernd (ab Dienstag)

Klinik
Ein 72-jährige Mann wird nach einem Sturz wegen einer Schenkelhalsfraktur operiert (Hüft-Endoprothese). Wegen verlängerter postoperativer Erholungsphase muss er weiter beatmet werden. Nach fünf Tagen entwickelt er neu auftretende pulmonale Infiltrate und der Sauerstoffanteil in der Beatmung muss erhöht werden.

Ein Bronchialsekret wurde bereits auf Blut-, McConkey- und Kochblutagar ausgestrichen.

Aufgabe
Identifizieren Sie die Keime mit den Ihnen zur Verfügung stehenden Mitteln (Koloniemorphologie, Hämolyseverhalten, Katalase-, Oxidase- und CF-Test)
Führen Sie eine Resistenzbestimmung durch, wenn dies klinisch sinnvoll erscheint

Fragen
Warum wird hier zusätzlich ein Kochblutagar verwendet?
Was sind die häufigsten Erreger einer ambulant erworbenen Pneumonie?
Was sind die häufigsten Erreger einer nosokomial erworbenen Pneumonie?
Welche Keime gehören zur physiologischen Flora des Rachenraums?
Auswertung Klinisch-mikrobiologische Fall Bernd

Keimdifferenzierung

<table>
<thead>
<tr>
<th>Koloniemorphologie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutagar</td>
<td></td>
</tr>
<tr>
<td>MacConkey-Agar</td>
<td></td>
</tr>
<tr>
<td>Kochblutagar</td>
<td></td>
</tr>
<tr>
<td>weitere Differenzierungsverfahren</td>
<td></td>
</tr>
<tr>
<td>Diagnose</td>
<td></td>
</tr>
<tr>
<td>gehört der Keim zur physiologischen Flora?</td>
<td></td>
</tr>
</tbody>
</table>

Resistenzbestimmung

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Antibiotika-Klasse</th>
<th>Hemmhofdurchmesser in mm</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fall Christian (ab Dienstag)

Klinik

Material
- Übernachtkultur (*Enterobacter cloacae* in MH-Bouillon)
- MacConkey-Agar
- MH-Agar
- MH-Agar mit 12 mg/l Cefotaxim (beschriftet mit CTX)
- steriler Wattetupfer

Aufgaben Dienstag
- Ausstreichen der Übernachtkultur auf MacConkey-Agar im Dreiösenausstrich (Ziel ist es, zu überprüfen, ob tatsächlich eine Reinkultur vorliegt)
- einen Abstrichtupfer in die Übernachtkultur tauchen und damit den MH-Agar ohne Antibiotikum beimpfen (wie bei der Resistenzbestimmung)
- den MH-Agar mit 12 mg/l Cefotaxim (CTX) genauso beimpfen

Auswertung (Mittwoch)

<table>
<thead>
<tr>
<th>Anzahl der gewachsenen Kolonien auf Mueller-Hinton-Agar ohne Cefotaxim:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der gewachsenen Kolonien auf Mueller-Hinton-Agar mit Cefotaxim:</td>
</tr>
</tbody>
</table>

Aufgaben Mittwoch
- Kolonien auf MH-Agar mit CTX zählen und vergleichen mit dem MH-Agar ohne Antibiotikum
- Anlegen eines Agardiffusionstests von Kolonien vom MH-Agar mit CTX und zum Vergleich
- Anlegen eines Agardiffusionstests von Kolonien vom MacConkey-Agar.
- Bitte nicht mehr als 5 Antibiotika-Testblättchen auf eine Agarplatte legen (Sie benötigen zwei Platten pro Resistenzbestimmung).
Dabei soll Imipenem in der Mitte liegen, 2 cm davon entfernt sollen Cefotaxim und Piperacillin aufgelegt werden, restliche Plättchen können nach Belieben platziert werden.
Auswertung (Donnerstag)

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Antibiotika-Klasse</th>
<th>auf MacConkey-Agar gewachsener Keim</th>
<th>auf Cefotaxim-haltigen Agar gewachsener Keim</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hemmhof (mm)</td>
<td>Bewertung</td>
</tr>
<tr>
<td>Amoxicillin-Clavulansäure (AUG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin (AM / AMP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aztreonam (ATM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefotaxim (CTX)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefuroxim (CXM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin (CIP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin (CN / GM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipenem (IMI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperacillin (PIP / PRL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperacillin-Tazobactam (PTZ / PZT)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Was fällt Ihnen an den Hemmhöfen auf? Beschreiben und erklären Sie:

Begründen Sie das Versuchsergebnis:
Praktikumsbegleitende Vorlesung Woche2

Thema:
Praktikumsbegleitende Vorlesung zu den Klinischen Fällen

Die Vorlesung wird auf unserem Server zur Verfügung gestellt unter
https://memiserf.medmikro.ruhr-uni-bochum.de/lehre_medizin.html
Woche 3

Lernziele
• Bedeutung und Detektion spezieller Resistenzmechanismen:
 AmpC-Betalaktamasen
 ESBL
 Carbapenemasen

• Wirkmechanismus der Fluorchinolone,
 Makrolidantibiotika, Aminoglykoside
 Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 99, 102, 104

• Endokarditis:
 Keimspektrum, mikrobiologische Diagnostik, Therapie
 Suerbaum, Burchard, Kaufmann, Schulz, 8. Auflage, Kapitel 112

Aufgrund der COVID-19-bedingten reduzierten Praktikumszeit kann die dritte Praktikumswoche leider nur in digitaler Form stattfinden. Wir verweisen hier auf das Moodle online-Praktikum.
Übersicht wichtiger Bakterien

Es sind die zahlenmäßig häufigsten und/oder klinisch bedeutsamsten Spezies aufgelistet.
Die Liste dient dazu, einen ersten Überblick zu bekommen und erhebt keinen Anspruch auf Vollständigkeit.

Grampositive Kokken

Staphylokokken
- *Staphylococcus aureus*
- *Staphylococcus epidermidis*
- *Staphylococcus haemolyticus*
- *Staphylococcus hominis*
- *Staphylococcus lugdunensis*
- *Staphylococcus saprophyticus*
- u. a.

Streptokokken
- *Streptococcus pneumoniae* (= Pneumokokken)
- *Streptococcus galalolyticus* (früher S. bovis)

vergrünende Streptokokken
- *S. anginosus*
- *S. salivarius*
- *S. mitis/oralis*
- u. a.

beta-hämolyserende Streptokokken
- *S. pyogenes* (weitestgehend synonym zu A-Streptokokken)
- *S. agalactiae* (synonym: B-Streptokokken)
- u. a.

Enterokokken
- *E. faecalis*
- *E. faecium*

Obligat anaerobe grampositive Kokken
- *Peptococcus spp.*, *Peptostreptococcus spp.*

Grampositive Stäbchen
- *Corynebacterium diphtheriae*
- u. a. *Corynebacterium spp.* der Hautflora
- *Listeria monocytogenes*
- *Bacillus anthracis*
- *Bacillus cereus*
- *Lactobacillus spp.*
- *Nocardia spp.*
- obligat anaerob: *Propionibacterium spp.*, *Clostridium difficile*, *Clostridium perfringens*, *Clostridium botulinum*
Gramnegative Kokken
- Neisseria meningitidis
- Neisseria gonorrhoeae
- u. a. Neisseria spp. der physiologischen Rachenflora
- Moraxella catarrhals

Gramnegative Stäbchen

Enterobacterales
- E. coli (auch die Pathovare EPEC, EIEC, ETEC, EHEC, EAEC)
- Shigella spp.
- Salmonella Typhi, Salmonella Paratyphi
- Salmonella Enteritidis
- Yersinia pestis
- Yersinia enterocolitica
- Yersinia pseudotuberculosis
- Citrobacter freundii
- Enterobacter cloacae
- Klebsiella aerogenes
- Klebsiella pneumoniae
- Klebsiella oxytoca
- Morganella morganii
- Proteus mirabilis
- Proteus vulgaris
- Serratia marcescens

Non-Fermenter
- Pseudomonas aeruginosa
- Acinetobacter baumannii
- Stenotrophomonas maltophilia
- Burkholderia cepacia

HACEK-Gruppe
- Haemophilus aphrophilus
- Aggregatibacter (früher: Actinobacillus) actinomycetemcomitans
- Cardiobacterium
- Capnocytophaga
- Eikenella corrodens
- Kingella kingae

Sonstige gramnegative Stäbchen
- Vibrio cholerae
- Pasteurella
- Haemophilus influenzae
- Bartonella henselae
- Campylobacter
- Helicobacter pylori
- Legionella
- Brucella
- Bordetella pertussis

Obligat anaerobe gramnegative Stäbchen
- Bacteroides fragilis und andere Bacteroides spp.
- Porphyromonas spp.
- Prevotella spp.
- Fusobacterium spp.
Obligat intrazelluläre Bakterien
- Chlamydia psittaci
- Chlamydia trachomatis
 - Serogruppe A-C
 - Serogruppe D-K
 - Serogruppe L1, L2, L3
- Chlamydophila pneumoniae
- Rickettsia
- Coxiella burnetii
- Tropheryma whippelii

Bakterien ohne Zellwand
- Mycoplasma pneumoniae
- Mycoplasma hominis
- Ureaplasma urealyticum

Mykobakterien
- Mycobacterium tuberculosis-Komplex
- M. leprae
- M. avium
- u. a. Mycobacterium spp.

Spirochaeten
- Treponema pallidum subsp. pallidum
- Borrelia burgdorferi sensu lato
- Leptospira
Einteilung einiger wichtiger Antibiotika

Betalaktam-Antibiotika

Penicilline
Merkhilfe: Penicilline enden immer auf ...cillin
- **Penicilline im engeren Sinne**
 - Penicillin G
 - Penicillin V
- **Aminopenicilline**
 - Ampicillin
 - Amoxicillin
- **Ureidopenicilline**
 - Piperacillin (Pipril®)
- **Penicillinasefeste Penicilline**
 - Methicillin (nicht mehr klinisch eingesetzt; Bedeutung nur noch als Namensgeber für MRSA)
 - Oxacillin
 - Flucloxacillin (Staphylex®)
- **Kombinationen mit Betalaktamase-Inhibitor**
 - Ampicillin + Sulbactam (Unacid®)
 - Amoxicillin + Clavulansäure (Augmentan®)
 - Piperacillin + Tazobactam (Tazobac®)

Cephalosporine
Merkhilfe: Cephalosporine beginnen (fast) immer mit Cef...
- **Generation 1**
 - Cefazolin
- **Generation 2**
 - Cefuroxim
- **Generation 3a**
 - Ceftriaxon (Rocephin®)
 - Cefotaxim (Claforan®)
- **Generation 3b**
 - Ceftazidim (Fortum®)
 - Cefepim (Maxipime®) (wird in einigen Einteilungen auch zur Generation 4 gezählt)

Carbapeneme
Merkhilfe: Carbapeneme enden immer auf ...penem
- Imipenem (Zienam®)
- Meropenem (Meronem®)
- Ertapenem (Invanz®)
- Doripenem (Doribax®)

Monobactam-Antibiotika
- Aztreonam
Aminoglykoside
Merkhilfe: einige enden auf ...micin oder ...mycin (cave: das ist auch der Fall bei Makroliden, Lincosamiden, Vancomycin und Fosfomycin)
- Gentamicin
- Tobramycin
- Amikacin

Makrolide
Merkhilfe: enden auf ...mycin (cave: das ist auch der Fall bei Aminoglykosiden, Lincosamiden, Vancomycin und Fosfomycin)
- Erythromycin
- Clarithromycin (Klacid®)
- Azithromycin (Zithromax®)
- Telithromycin (Ketek®) (gehört eigentlich zur Gruppe der Ketolide; hier aufgeführt, da mit den Makroliden eng verwandt)

Lincosamide
- Clindamycin (Sobelin®)

Chinolone
Merkhilfe: enden (fast) alle auf ...floxacin
- Ciprofloxacin (Ciprobay®)
- Levofloxacin (Tavanic®)
- Moxifloxacin (Avalox®)

Tetracycline
Merkhilfe: enden alle auf ...cyclin
- Tetracyclin
- Doxycyclin
- Minocyclin
- Tigecyclin (Tygacil®) (meistens als Vertreter der neuen Gruppe der Glycylcycline bezeichnet; ist aber ein Derivat des Minocyclin)

Glycopeptidantibiotika
- Vancomycin
- Teicoplanin

Folgende Antibiotika sind nicht enger miteinander verwandt und gehören Antibiotikaklassen an, die jeweils nur einen oder wenige Vertreter haben (es liegen also teilweise ganz unterschiedliche Wirkmechanismen zugrunde)
- Sulfamethoxazol/Trimethoprim
- Rifampicin
- Fosfomycin
- Fusidinsäure
- Linezolid (Zyvoxid®)
- Daptomycin (Cubicin®)
- Mupirocin (Turixin® Nasensalbe)
- Colistin
- Chloramphenicol
- Nitrofurantoin
- Metronidazol (Clont®)

53