Literaturverzeichnis Erkennung von Resistenzmechanismen, S. Gatermann 1. Levy SB. From tragedy the antibiotic age is born. In: The Antibiotic Paradox – How Miracle Drugs Are Destroying the Miracle. New York: Plenum Press; 1992. 2. Lorian V. Antibiotics in Laboratory Medicine 4th ed. Baltimore: Lippincott Williams and Wilkins; 1996. 3. Gatermann S, Laufs R. Oxacillin-resistente Staphylokokken in der Routinediagnostik. Immun Infekt 1987; 15: 110-1. 4. Trautmann M, Brückner O, Marre R, Hahn H, Comparative efficacy of different beta-lactam antibiotics and gentamicin in Klebsiella pneumoniae septicaemia in neutropenic mice. J Antimicrob Chemother 1986; 18: 387-91. 5. Soriano F, Ponte C, Santamaria M, Jimenez-Arriero M. Relevance of the inoculum effect of antibiotics in the outcome of experimental infections caused by Escherichia coli. J Antimicrob Chemother 1990; 25: 621-7. 6. Livermore DM. beta-Lactamases: quantity and resistance. Clin Microbiol Infect 1997; 3 Suppl 4: 10-19. 7. Livermore DM, Winstanley TG, Shannon KP. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J Antimicrob Chemother 2001; 48 Suppl 1: 87-102. 8. Courvalin P. Interpretive Reading of Antimicrobial Susceptibility Tests. ASM News 1992; 58: 368-375; 1992. 9. Kirby WMM. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 1944; 99: 452-453. 10. Nannini EC, Singh KV, Murray BE. Relapse of type A beta-lactamase-producing Staphylococcus aureus native valve endocarditis during cefazolin therapy: revisiting the issue. Clin Infect Dis 2003; 37: 1194-8. 11. Gill VJ, Manning CB, Ingalls CM. Correlation of penicillin minimum inhibitory concentrations and penicillin zone edge appearance with staphylococcal beta-lactamase production. J Clin Microbiol 1981; 14: 437-40. 12. Ferreira RB, Iorio NL, Malvar KL, Nunes AP, Fonseca LS, Bastos CC, Santos KR. Coagulase-negative staphylococci: comparison of phenotypic and genotypic oxacillin susceptibility tests and evaluation of the agar screening test by using different concentrations of oxacillin. J Clin Microbiol 2003; 41: 3609-14. 13. Swenson JM, Tenover FC, Tenover FC. Results of disk diffusion testing with cefoxitin correlate with presence of mecA in Staphylococcus spp. J Clin Microbiol 2005; 43: 3818-23. 14. Velasco D, del Mar Tomas M, Cartelle M, Beceiro A, Perez A, Molina F, Moure R, Villanueva R, Bou G. Evaluation of different methods for detecting methicillin (oxacillin) resistance in Staphylococcus aureus. J Antimicrob Chemother 2005; 55: 379-82. 15. Zhu LX, Zhang ZW, Wang C, Yang HW, Zhang Q, Cheng J. Evaluation of the CLSI cefoxitin 30-microg disk-diffusion method for detecting methicillin resistance in staphylococci. Clin Microbiol Infect 2006; 12: 1039-42. 16. Palazzo IC, Darini AL. Evaluation of methods for detecting oxacillin resistance in coagulase-negative staphylococci including cefoxitin disc diffusion. FEMS Microbiol Lett 2006; 257: 299-305. 17. Perazzi B, Fermepin MR, Malimovka A, GarcÃa SD, Orgambide M, Vay CA, de Torres R, Famiglietti AM. Accuracy of cefoxitin disk testing for characterization of oxacillin resistance mediated by penicillin-binding protein 2a in coagulase-negative staphylococci. J Clin Microbiol 2006; 44: 3634-9. 18. Smyth RW, Kahlmeter G. Mannitol salt agar-cefoxitin combination as a screening medium for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2005; 43: 3797-9. 19. van Leeuwen WB, van Pelt C, Luijendijk A, Verbrugh HA, Goessens WH. Rapid detection of methicillin resistance in Staphylococcus aureus isolates by the MRSA-screen latex agglutination test 2006. J Clin Microbiol 37: 3029-30. 20. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Sixteenth Informational Supplement. CLSI document M100-S16. CLSI, Wayne, USA 2006. 21. Horstkotte MA, Knobloch JK, Rohde H, Dobinsky S, Mack D. Rapid detection of methicillin resistance in coagulase-negative Staphylococci with the VITEK 2 system. J Clin Microbiol 2002; 40: 3291-5. 22. Siberry GK, Tekle T, Carroll K, Dick J. Failure of Clindamycin Treatment of Methicillin-Resistant Staphylococcus aureus Expressing Inducible Clindamycin Resistance In Vitro. Clin Infect Dis 2003; 37: 1257-60. 23. Drinkovic D, Fuller ER, Shore KP, Holland DJ, Ellis-Pegler R, Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J Antimicrob Chemother 2001; 48: 315-6. 24. Sandler P, Weisblum B. Erythromycin-induced stabilization of ermA messenger RNA in Staphylococcus aureus and Bacillus subtilis. J Mol Biol 1988; 203: 905-15. 25. Sandler P, Weisblum B. Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5'-to-3' nucleolytic cleavage of the ermA transcript. J Bacteriol 1989; 171: 6680-8. 26 Schmitz FJ, Petridou J, Astfalk N, Kohrer K, Scheuring S, Schwarz S. Molecular analysis of constitutively expressed erm(C) genes selected in vitro by incubation in the presence of the noninducers quinupristin, telithromycin, or ABT-773 2003. Microb Drug Resist 2002; 8: 171-7. 27. Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 1990; 4: 1207-14. 28. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol 2003; 41: 4740-4. 29. Schmitz FJ, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E, Verhoef J, Heinz HP, Jones ME, The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother 1999; 43: 253-9. 30. Ounissi H, Derlot E, Carlier C, Courvalin P. Gene homogeneity for aminoglycoside-modifying enzymes in gram-positive cocci. Antimicrob Agents Chemother 1990; 34: 2164-8. 31. Wootton M, Macgowan AP, Walsh TR, Howe RA. A multi-center study evaluating the current strategies for isolating Staphylococcus aureus strains with reduced susceptibility to glycopeptides. J Clin Microbiol 2007; 45: 329-332. 32. Palepou MF, Johnson AP, Cookson BD, Beattie H, Charlett A, Woodford N. Evaluation of disc diffusion and Etest for determining the susceptibility of Staphylococcus aureus to mupirocin. J Antimicrob Chemother 1998; 42: 577-83. 33. Peterson LR. Penicillins for treatment of pneumococcal pneumonia: does in vitro resistance really matter? Clin Infect Dis 2006; 42: 224-33. 34. Reinert RR, Franken C, van der Linden M, Lütticken R, Cil M, Al-Lahham A. Molecular characterisation of macrolide resistance mechanisms of Streptococcus pneumoniae and Streptococcus pyogenes isolated in Germany. 2002-2003. Int J Antimicrob Agents 2004; 24: 43-7. 35. Reinert RR, Lütticken R, Bryskier A, Al-Lahham A, Macrolide-resistant Streptococcus pneumoniae and Streptococcus pyogenes in the pediatric population in Germany during 2000-2001. Antimicrob Agents Chemother 2003; 47: 489-93. 36. Carias LL, Rudin SD, Donskey CJ, Rice LB. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol 1998; 180: 4426-34. 37. Zorzi W, Zhou XY, Dardenne O, Lamotte J, Raze D, Pierre J, Gutmann L, Coyette J, Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J Bacteriol 1996; 178: 4948-57. 38. Weinstein MP, Mirrett S, Kannangara S, Monahan J, Harrell LJ, Wilson AC, Reller LB. Multicenter evaluation of use of penicillin and ampicillin as surrogates for in vitro testing of susceptibility of enterococci to imipenem. J Clin Microbiol 2004; 42: 3747-51. 39. Metzidie E, Manolis EN, Pournaras S, Sofianou D, Tsakris A, Spread of an unusual penicillin- and imipenem-resistant but ampicillin-susceptible phenotype among Enterococcus faecalis clinical isolates. J Antimicrob Chemother 2006; 57: 158-60. 40. Hällgren A, Abednazari H, Ekdahl C, Hanberger H, Nilsson M, Samuelsson A, Svensson E, Nilsson LE, Nilsson LE. Antimicrobial susceptibility patterns of enterococci in intensive care units in Sweden evaluated by different MIC breakpoint systems. J Antimicrob Chemother 2001; 48: 53-62. 41. Kawalec M, Gniadkowski M, Kedzierska J, Skotnicki A, Fiett J, Hryniewicz W. Selection of a teicoplanin-resistant Enterococcus faecium mutant during an outbreak caused by vancomycin-resistant enterococci with the vanB phenotype. J Clin Microbiol 2001; 39: 4274-82. 42. Lefort A, Arthur M, Depardieu F, Chau F, Pouzet C, Courvalin P, Fantin B. Expression of glycopeptide-resistance gene in response to vancomycin and teicoplanin in the cardiac vegetations of rabbits infected with VanB-type Enterococcus faecalis. J Infect Dis 2004; 189: 90-7. 43. Jorgensen JH, McElmeel ML, Trippy CW. Comparison of inoculation methods for testing enterococci by using vancomycin screening agar. J Clin Microbiol 1996; 34: 2841-2. 44. Chenoweth CE, Robinson KA, Schaberg DR. Efficacy of ampicillin versus trimethoprim-sulfamethoxazole in a mouse model of lethal enterococcal peritonitis. Antimicrob Agents Chemother 1990; 34: 1800-2. 45. Grayson ML, Thauvin-Eliopoulos C, Eliopoulos GM, Yao JD, DeAngelis DV, Walton L, Woolley JL, Moellering RC. Failure of trimethoprim-sulfamethoxazole therapy in experimental enterococcal endocarditis. Antimicrob Agents Chemother 1990; 34: 1792-4. 46. Najjar A, Murray BE. Failure to demonstrate a consistent in vitro bactericidal effect of trimethoprim-sulfamethoxazole against enterococci. Antimicrob Agents Chemother 1987; 31: 808-10. 47. Zervos MJ, Schaberg DR. Reversal of the in vitro susceptibility of enterococci to trimethoprim-sulfamethoxazole by folinic acid. Antimicrob Agents Chemother 1985; 28: 446-8. 48. Jacoby GA. Beta-lactamase nomenclature. Antimicrob Agents Chemother 2006; 50: 1123-9. 49. Panwalker AP, Trager GM, Porembski PE. Klebsiella species: antimicrobial susceptibilities, bactericidal kinetics, and in vitro inactivation of beta-lactam agents. Antimicrob Agents Chemother 1980; 18: 877-81. 50. Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2001; 45: 3548-54. 51. Burgess DS, Hall RG. In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-ESBL producing Klebsiella pneumoniae. Diagn Microbiol Infect Dis 2004; 49: 41-6. 52. Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8: 557-84 53. Cullmann W, Seibert G. Properties of an inducible beta-lactamase from Proteus vulgaris. Zentralbl Bakteriol Mikrobiol Hyg [A] 1986; 262: 208-19. 54. Jacobs C, Frère JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell 1997; 88: 823-32. 55. Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, Johnson MP, Ramphal R, Wagener MM, Miyashiro DK, Yu VL. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 1991; 115: 585-90. 56.Paterson DL, Ko WC, Von Gottberg A, Casellas JM, Mulazimoglu L, Klugman KP, Bonomo RA, Rice LB, McCormack JG, Yu VL. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 2001; 39: 2206-12. 57. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis 2004; 39: 31-7 58.Kang CI, Kim SH, Park WB, Lee KD, Kim HB, Kim EC, Oh MD, Choe KW. Bloodstream infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. Antimicrob Agents Chemother 2004; 48: 4574-81. 59. Song W, Moland ES, Hanson ND, Lewis JS, Jorgensen JH, Thomson KS. Failure of cefepime therapy in treatment of Klebsiella pneumoniae bacteremia. J Clin Microbiol 2005; 43: 4891-4. 60. Rodríguez-Baño J, Navarro MD, Romero L, Muniain MA, de Cueto M, Ríos MJ, Hernández JR, Pascual A. Bacteremia due to extended-spectrum beta -lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 2006; 43: 1407-14. 61. Pitout JD, Reisbig MD, Venter EC, Church DL, Hanson ND. Modification of the double-disk test for detection of enterobacteriaceae producing extended-spectrum and AmpC beta-lactamases. J Clin Microbiol 2003; 41: 3933-5. 62. Livermore DM, Struelens M, Amorim J, Baquero F, Bille J, Canton R, Henning S, Gatermann S, Marchese A, Mittermayer H, Nonhoff C, Oakton KJ, Praplan F, Ramos H, Schito GC, Van Eldere J, Verhaegen J, Verhoef J, Visser MR. Multicentre evaluation of the VITEK 2 Advanced Expert System for interpretive reading of antimicrobial resistance tests. J Antimicrob Chemother 2002; 49: 289-300. 63. Leverstein-van Hall MA, Fluit AC, Paauw A, Box AT, Brisse S, Verhoef J. Evaluation of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 automated instruments for detection of extended-spectrum beta-lactamases in multiresistant Escherichia coli and Klebsiella spp. J Clin Microbiol 2002; 40: 3703-11. 64. Spanu T, Sanguinetti M, Tumbarello M, D'Inzeo T, Fiori B, Posteraro B, Santangelo R, Cauda R, Fadda G. Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates. J Clin Microbiol 2006; 44: 3257-62. 65.Menozzi MG, Eigner U, Covan S, Rossi S, Somenzi P, Dettori G, Chezzi C, Fahr AM. Two-center collaborative evaluation of performance of the BD phoenix automated microbiology system for identification and antimicrobial susceptibility testing of gram-negative bacteria. J Clin Microbiol 2006; 44: 4085-94. 66. Hope R, Potz NA, Warner M, Fagan EJ, Arnold E, Livermore DM. Efficacy of practised screening methods for detection of cephalosporin-resistant Enterobacteriaceae. J Antimicrob Chemother 2007; 59: 110-3. 67. Linscott AJ, Brown WJ. Evaluation of four commercially available extended-spectrum beta-lactamase phenotypic confirmation tests. J Clin Microbiol 2005; 43: 1081-5. 68. Stührenburg E, Sobottka I, Noor D, Laufs R, Mack D. Evaluation of a new cefepime-clavulanate ESBL Etest to detect extended-spectrum {beta}-lactamases in an Enterobacteriaceae strain collection. J Antimicrob Chemother 2004; 54: 134-8. 69. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001; 32: 1162-71. 70. Babini GS, Yuan M, Hall LM, Livermore DM. Variable susceptibility to piperacillin/tazobactam amongst Klebsiella spp. with extended-spectrum beta-lactamases. J Antimicrob Chemother 2003; 51: 605-12. 71. Zimhony O, Chmelnitsky I, Bardenstein R, Goland S, Hammer Muntz O, Navon Venezia S, Carmeli Y. Endocarditis caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: emergence of resistance to ciprofloxacin and piperacillin-tazobactam during treatment despite initial susceptibility. Antimicrob Agents Chemother 2006; 50: 3179-82. 72. Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, Quale J. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005; 165: 1430-5. 73. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001; 45: 1151-61. 74. Barry AL, Fuchs PC. Antibacterial activities of grepafloxacin, ciprofloxacin, ofloxacin and fleroxacin. J Chemother 1997; 9: 9-16. 75. Jonas D, Biehler K, Hartung D, Spitzmüller B, Daschner FD. Plasmid-mediated quinolone resistance in isolates obtained in german intensive care units. Antimicrob Agents Chemother 2005; 49: 773-5. 76.Cambau E, Lascols C, Sougakoff W, Bebear C, Bonnet R, Cavallo JD, Gutmann L, Ploy MC, Jarlier V, Soussy CJ, Robert J. Occurrence of qnrA-positive clinical isolates in French teaching hospitals during 2002-2005. Clin Microbiol Infect 2006; 12: 1013-20. 77. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005; 41 Suppl 2: 120-6. 78. Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis 2003; 37: 75-81. 79. Wain J, Hoa NT, Chinh NT, Vinh H, Everett MJ, Diep TS, Day NP, Solomon T, White NJ, Piddock LJ, Parry CM, Quinolone-resistant Salmonella typhi in Viet Nam: molecular basis of resistance and clinical response to treatment. Clin Infect Dis 1997; 25: 1404-10. 80. Booker BM, Smith PF, Forrest A, Bullock J, Kelchlin P, Bhavnani SM, Jones RN, Ambrose PG. Application of an in vitro infection model and simulation for reevaluation of fluoroquinolone breakpoints for Salmonella enterica serotype typhi. Antimicrob Agents Chemother 2005; 49: 1775-81. 81. Juan C, Moya B, Perez JL, Oliver A. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother 2006; 50: 1780-7. 82. Vila J, Marco F. Lectura interpretada del antibiograma de bacilos gramnegativos no fermentadores. Enferm Infecc Microbiol Clin 2002; 20: 304-10; quiz 311-2. 83. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50: 1633-41. 84. Kohler T, Michea-Hamzehpour M, Epp SF, Pechere JC. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother 1999; 43: 424-7. 85. Paul M, Silbiger I, Grozinsky S, Soares-Weiser K, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2006; CD003344. 86. Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49: 479-87. 87. Schmitz FJ, Verhoef J, Fluit AC. Prevalence of aminoglycoside resistance in 20 European university hospitals participating in the European SENTRY Antimicrobial Surveillance Programme. Eur J Clin Microbiol Infect Dis 1999; 8: 414-21.
88. Akasaka T, Tanaka M, Yamaguchi A, Sato K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob Agents Chemother 2001; 45: 2263-8.
89. Segal H, Nelson EC, Elisha BG. Genetic environment and transcription of ampC in an Acinetobacter baumannii clinical isolate. Antimicrob Agents Chemother 2004; 48: 612-4. 90. Héritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect 2006; 12: 123-30. 91. Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother 2003; 52: 629-35. 92. Williams JD. beta-Lactamase inhibition and in vitro activity of sulbactam and sulbactam/ cefoperazone. Clin Infect Dis 1997; 24: 494-7. 93. Gales AC, Sader HS, Sinto S, Santos OP, Mendes CM. In vitro activity of ampicillin-sulbactam against clinical multiresistant Acinetobacter baumannii isolates. J Chemother 1996; 8: 416-9. 94. Levin AS. Multiresistant Acinetobacter infections: a role for sulbactam combinations in overcoming an emerging worldwide problem. Clin Microbiol Infect 2002; 8: 144-53. 95. Landman D, Quale JM, Mayorga D, Adedeji A, Vangala K, Ravishankar J, Flores C, Brooks S. Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. Arch Intern Med 2002; 162: 1515-20. 96. Rahmati-Bahram A, Magee JT, Jackson SK. Effect of temperature on aminoglycoside binding sites in Stenotrophomonas maltophilia. J Antimicrob Chemother 1997; 39: 19-24. 97. Walsh TR, Bolmstrom, Qwarnstrom A, Gales A. Evaluation of a new Etest for detecting metallo-beta-lactamases in routine clinical testing. J Clin Microbiol 2002; 40: 2755-9. 98. Muñoz Bellido JL, García-Rodriguez JA. Aztreonam-clavulanic acid synergy does not mean extended-spectrum beta-lactamase in Stenotrophomonas maltophilia. J Antimicrob Chemother 1998; 41: 493-4. 99. Lecso-Bornet M, Pierre J, Sarkis-Karam D, Lubera S, Bergogne-Berezin E. Susceptibility of Xanthomonas maltophilia to six quinolones and study of outer membrane proteins in resistant mutants selected in vitro. Antimicrob Agents Chemother 1992; 36: 669-71. 100. Garrison MW, Anderson DE, Campbell DM, Carroll KC, Malone CL, Anderson JD, Hollis RJ, Pfaller MA. Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother 1996; 40: 2859-64. 101. Fass RJ, Barnishan J, Solomon MC, Ayers LW. In vitro activities of quinolones, beta-lactams, tobramycin, and trimethoprim-sulfamethoxazole against nonfermentative gram-negative bacilli. Antimicrob Agents Chemother 1996; 40: 1412-8. 102. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41: 2738-41. 103. Rossolini GM, Franceschini N, Riccio ML, Mercuri PS, Perilli M, Galleni M, Frere JM, Amicosante G. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem J 1998; 332 ( Pt 1): 145-52. 104. Aldridge KE, Valainis GT, Sanders CV. Comparison of the in vitro activity of ciprofloxacin and 24 other antimicrobial agents against clinical strains of Chromobacterium violaceum. Diagn Microbiol Infect Dis 1988; 10: 31-9. 105.Fantinatti-Garboggini F, Almeida R, Portillo Vdo A, Barbosa TA, Trevilato PB, Neto CE, Coelho RD, Silva DW, Bartoleti LA, Hanna ES, Brocchi M, Manfio GP. Drug resistance in Chromobacterium violaceum. Genet Mol Res 2004; 3: 134-47. 106. Thibault FM, Hernandez E, Vidal DR, Girardet M, Cavallo JD,. Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. J Antimicrob Chemother 2004; 54: 1134-8. 107. Sader HS, Jones RN. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents 2005; 25: 95-109. 108. Mammeri H, Bellais S, Nordmann P. Chromosome-encoded beta-lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (formerly Flavobacterium odoratum), new members of the lineage of molecular subclass B1 metalloenzymes. Antimicrob Agents Chemother 2002; 46: 3561-7.